
Journal of Computational Physics 220 (2006) 355–382

www.elsevier.com/locate/jcp
On the use of a high order overlapping grid method for
coupling in CFD/CAA

G. Desquesnes a,*, M. Terracol a, E. Manoha a, P. Sagaut b
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Abstract

This paper presents a theoretical analysis and two applications of a high-order overlapping grid method for coupling
Cartesian and curvilinear grids, developed in order to simulate aerodynamic noise. First, the overlapping grid method
based on Lagrange interpolating polynomials is described and a theoretical analysis of the interpolation operator is then
carried out. It shows that the interpolation generates spurious modes that depend on the wavenumbers of the signal.
Besides it also gives the optimal conditions in which interpolation can be applied. Then an application to the simulation
of the aeroacoustic noise generated by the vortex shedding behind a cylinder is presented. During this simulation, it
appears that interpolation can create some spurious acoustic modes in regions where hydrodynamic fluctuations are sig-
nificant, as predicted by the theoretical analysis. It is shown that these spurious modes disappear when a refined Cartesian
grid is used (26 points per wavelength of the vortex shedding were found to be adequate in this study). At last, the sim-
ulation of the aerodynamic noise of a three element high-lift wing profile has then been carried out. For this application,
the main acoustic source at the slat trailing edge is represented analytically. The propagation of the generated acoustic
wave is simulated with a mean flow at rest and with a steady turbulent mean flow computed by RANS. The first applica-
tion allows us to assess the method by comparing the results to a reference solution. The second one shows that the influ-
ence of a non-uniform mean flow on the directivity of an acoustic source can be observed in complex geometries. This
application therefore shows that the proposed coupling method is well adapted to complex geometries that are usually
met in industrial applications.
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1. Introduction

Computational AeroAcoustics (CAA) is a science in rapid development these last years following the
demand of aeronautic industries. One of the main purposes is to be able to simulate the generation and prop-
agation of aerodynamic noise.

Our purpose is to predict with accuracy the flow around a body and to compute the farfield noise generated
by this flow. The difficulty comes from the disparity of scales to simulate, the hydrodynamic and acoustic
scales being very different. To achieve this purpose, Manoha et al. [1] have proposed a hybrid method in three
steps. The first one consists in simulating the flow near the body with an unsteady simulation (DNS/LES) to
describe accurately the aerodynamic noise sources. Then, on a second domain, Euler equations written in per-
turbation form are used to simulate the propagation of sound waves in a midfield domain where the turbu-
lence rate is low but mean flow gradient are still significant. It has to be noted that for this second step,
some high-order numerical schemes have to be introduced to allow a correct propagation of the acoustic
waves. More particularly, the scheme has to minimize the dissipative and dispersive numerical errors. In
the last step, when the mean flow is nearly uniform, an integral method is utilized to compute the acoustic
radiation in the farfield.

An accurate simulation of the flow around the body requires a fine body-fitted grid. On the second domain,
a good propagation of the acoustic waves requires an homogenous and isotropic grid, together with the use of
some high-order numerical schemes. In this aim, a first approach has been to develop a grid refinement
method to adapt the body-fitted grid to acoustic wave propagation as we further off the body. Guénanff
et al. [2–4], developed such an approach, which has been assessed on several configurations. But these appli-
cations have also shown the limits of such an approach. Indeed, the extension from 2D to 3D is not straight-
forward and it is difficult to use it on geometrically complex configurations since curvilinear grids are required.
In the same time, new methods based on another strategy have been proposed in recent works by Defls [5],
Sherer and Scott [6], Lee and Baeder [7]: Chimera type methods well suited for CAA. They are based on pre-
viously developed Chimera methods for CFD [8–10], but higher order interpolations have to be used to match
the accuracy requirement of CAA. The difference between all these recent overset or overlapped grid tech-
niques relies on the numerical schemes that are used (spatial derivation, filtering, temporal integration, inter-
polation), while the way to proceed remains the same for all of them. It consists in defining a mesh coupling
method for curvilinear and Cartesian grids. Such an approach has two main interests. The first one is to ben-
efit of the numerical properties of Cartesian grid for propagation and those of body-fitted mesh for geomet-
rically complex boundary conditions as clearly stated by Delfs [11]. The second one is its flexibility since it
renders the use of structured grids for complex geometry much easier [10,9,5]. Previous results were mostly
dealing with simple test cases and the definition of a method well suited for complex flow is still an open issue.
In most cases, the mean flow of the simulations is at rest, and the nature of the studied phenomenons is purely
acoustic. Yin and Delfs presented a simulation where the mean flow was not uniform but was analytically
defined [12]. Therefore, the present work investigates the use of overlapping grid method of Chimera type
on some more complicated configurations. In these cases, the increased complexity has two possible origins:
the disparity between acoustic and hydrodynamic scale, the geometry of the configuration. Two particular
cases, involving such difficulties, will be considered in this paper: the simulation of the noise created by the
flow around a cylinder and the simulation of the radiation of an aeroacoustic source of a high lift wing profile
in landing configuration. The first application will show that interpolation can create spurious acoustic modes.
In order to understand this phenomenon, a theoretical analysis of Lagrange polynomials (used in the coupling
method) has been carried out. It is different from one proposed by Tam and Kurbatskii [13] and then used by
Sherer and Scott [14]. This study allows us to understand the origin of the spurious modes created by the inter-
polant and what is the influence of the order of interpolation on the magnitude of these modes. Besides, this
analysis gives us the condition in which the spurious modes can be filtered. The paper is organized as follows:
In Section 2, the equations for CAA, the numerical methods for spatial derivation, filtering and temporal inte-
gration are presented. Then, the overlapping grid method is defined. In Section 3, a theoretical analysis of the
interpolation based on Lagrange polynomials is performed within the framework of signal theory. Section 4
shows an application of the coupling method to the simulation of the aerodynamic noise generated by the vor-
tex shedding behind a cylinder. For this application, it is observed that the interpolation procedure is respon-
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sible for spurious acoustics sources, and thanks to analysis previously done, an explanation of this phenom-
enon is proposed. At last in Section 5, the overlapping grid method will be applied to an industrial case: the
propagation of an acoustic wave around a high lift wing profile in landing configuration. A first simulation is
done with a mean flow at rest to assess the method by comparing the results to those obtained with a simu-
lation based on BEM (Boundary Element Method). Then, a steady mean flow computed by RANS is used as a
mean flow, therefore making it possible to investigate the effects of the flow on the acoustic propagation.
2. Equations and numerical method

2.1. Basic equations

We consider the compressible Navier–Stokes equations under the following compact form:
oU
ot
þ CðUÞ ¼VðUÞ ð1Þ
where U = (q,quT,qE)T is the conservative variable vector, with u = (u,v,w)T the velocity vector. The convec-
tion term is expressed as:
CðUÞ ¼
r � ðquÞ

r � ðqu� uÞ þ rp

r � ððqE þ pÞuÞ

0B@
1CA ð2Þ
where p is the pressure, q the density, u the velocity vector and qE the total energy.
The viscous terms are:
VðUÞ ¼
0

r � r
r � ðr : uÞ � r � Q

0B@
1CA ð3Þ
Some classical expressions are retained for the viscous stress tensor r and viscous heat flux vector Q, i.e.:
r ¼ 2lSd ð4Þ
Q ¼ jrT ð5Þ
where the exponent d denotes the deviatoric part of a tensor, T is temperature, and S is the rate-of-strain
tensor:
S ¼ 1

2
ðruþ ðruÞTÞ ð6Þ
The temperature is linked to the pressure by the perfect gas state-law, and Sutherland’s law is used to compute
the viscosity l as a non-linear function of T. Finally, the thermal conductibility coefficient j is linked to vis-
cosity through the use of a Prandtl number assumption (Pr = 0.7 in this study) as: j = Cpl/Pr, where Cp is the
iso-pressure heat coefficient.

Obviously, the set of the Euler equations correspond to the case in which the viscous term VðUÞ is
neglected.
2.2. Navier–Stokes perturbation equations (NSPE)

As it is usually the case in aeroacoustics, the basic equations describing the flow dynamics will be solved in a
perturbation form. The principle of this method is to decompose the global field U as a mean part U0 – that is
considered as an input of the problem – and a fluctuating one U 0:
U ¼ U þ U 0 ð7Þ
0
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The evolution equations for the mean field are:
oU 0

ot
þ CðU 0Þ ¼VðU 0Þ þ S0 ð8Þ
where S0 is an additive source term in the equations which accounts for the fact that the mean field U0 is not
necessary an exact solution of the original Navier–Stokes equations. For instance, this term can be related to
the modelling terms arising from the use of a turbulence model (RANS, LES). One can remark here that the
particular case of a steady mean flow corresponds to S0 ¼ CðU 0Þ �VðU 0Þ.

The evolution equations for the perturbation field U 0 that will be considered in the following are then sim-
ply obtained by subtracting these last equations from the full Navier–Stokes equations (Eq. (1)):
oU 0

ot
þ CðU 0 þ U 0Þ �VðU 0 þ U 0Þ ¼ CðU 0Þ �VðU 0Þ � S0 ð9Þ
where the r.h.s. theoretically vanishes in the case of a steady mean flow U0. It is however recommended to
compute explicitly this term in the formulation, in order to account for some possible convergence and/or dis-
cretization errors. Solving the set of equations (9) instead of the full Eq. (1) has the double advantage that it
minimizes the sensitivity of low-amplitudes perturbations to numerical errors, and that an arbitrary mean field
can be imposed. In the following, this set of equations will be referred to as the Navier–Stokes perturbation
equations (NSPE).

It is to be noted that this method, originally proposed by Morris [15] and referred to as the non-linear dis-
turbance equations (NLDE) approach, was also extended to the case of the filtered Navier–Stokes equations
solved in large-eddy simulation (LES) by Labourasse and Sagaut [16]. In this last case, the field was then
decomposed as a mean field U0 computed by RANS, and a fluctuating part U 0 computed by LES.

2.3. Numerical method

In this study, since the objective is to simulate noise propagation, some high-order numerical schemes have
been retained to discretize the NSPE (9).

The spatial scheme used in this study relies on a classical sixth-order accurate finite-difference centered dis-
cretization. The spatial derivatives of any quantity f are then computed as (in one dimension):
of
ox
ðxÞ ¼ 1

Dx

X3

k¼�3

akf ðxþ kDxÞ ð10Þ
where Dx is the space step in the x-direction. The coefficients values are, respectively, a0 = 0, a1 = �a�1 =
45/60, a2 = �a�2 = �9/60, a3 = �a�3 = 1/60. A Fourier analysis of this scheme shows that eight points per
wavelength are necessary for a satisfactory approximation of the derivative operator [17,18]. For curvilinear
grids, the curvilinear extension strategy proposed by Visbal and Gaitonde [19] has been retained.

Since this centered scheme is non-dissipative, it promotes the growth of spurious high-frequency numerical
errors. For this reason, a stabilization step is also added in the numerical method, which relies on the appli-
cation of a 10th-order accurate centered linear filtering operator on the solution at each time step. This filter-
ing operator F is defined as (in one dimension):
F ðf ÞðxÞ ¼
X5

k¼�5

bkf ðxþ kDxÞ ð11Þ
To compute the filter coefficient values, the first condition imposed to the coefficients is that the filter sup-
presses the odd–even mode. This constraint leads to the following expression:
X5

k¼�5

bkð�1Þk ¼ 0
This equation has 5 degrees of freedom which are then used to maximize the order of the filtering operator. To
do so, the Taylor series expansion of f(x + kDx) is written for k = �5, . . . , 5, and the filter coefficients are then
computed so that:
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F ðf ÞðxÞ ¼ f ðxÞ þ OðDx10Þ

The filter coefficient values are determinated by inversing a system of six equations and are, respectively:
b0 ¼ 772=1024; b1 ¼ b�1 ¼ 210=1024; b2 ¼ b�2 ¼ �120=1024; b3 ¼ b�3 ¼ 45=1024;

b4 ¼ b�4 ¼ �10=1024; b5 ¼ b�5 ¼ 1=1024
It is to be noticed that the degrees of freedom could be used in another purpose as Bogey and Bailly [20] have
proposed it.

On uniform Cartesian grids, the filtering operator in two or three dimensions is simply obtained by recur-
sive application of the filter in each direction. For instance in two dimensions, the filtering operator is defined
as:
F ðf Þðx; yÞ ¼
X

k¼�5;5

X
l¼�5;5

bkblf ðxþ kDx; y þ lDyÞ ð12Þ
For curvilinear grids, the way to proceed is the following. The two-dimensional case is considered here for the
sake of simplicity without restriction on the generality of the method. Let g be a function to be filtered at the
points (xi,j,yi,j) of a mesh. The filtering operator G is defined as follows:
GðgÞðxi; yjÞ ¼
X

k¼�5;5

X
l¼�5;5

bkblgðxiþk;jþl; yiþk;jþlÞ ð13Þ
This filter is of the 10th order in the computational domain used to solve the fluid mechanics equations. Indeed
let h be the transformation such that:
ðxi;j; yi;jÞ ¼ hði; jÞ
The corresponding computational domain is a Cartesian grid with Dx = 1 and Dy = 1. So Eq. (13) is equiv-
alent to:
GðgÞðxi; yjÞ ¼
X

k¼�5;5

X
l¼�5;5

bkblgðhðiþ k; jþ lÞÞ

()
GðgÞðxi; yjÞ ¼

X
k¼�5;5

X
l¼�5;5

bkblf ðiþ k; jþ lÞ ð14Þ
with
f ði; jÞ ¼ gðhði; jÞÞ ¼ gðxi;j; yi;jÞ
The definition of G can then be extended to every point of the physical domain. Let (x,y) be a point of this
domain, there exists (n,g) such that:
ðx; yÞ ¼ hðn; gÞ

The filtering operator G applied to g in the (x,y) space can then be written as:
GðgÞðx; yÞ ¼
X

k¼�5;5

X
l¼�5;5

bkblf ðnþ k; gþ lÞ () GðgÞðx; yÞ ¼
X

k¼�5;5

X
l¼�5;5

bkblgðxþ ax;y;k;l; y þ bx;y;k;lÞ
with
ðax;y;k;l; bx;y;k;lÞ ¼ hðnþ k; gþ lÞ � hðn; gÞ
It is to be noticed that:
GðgÞðx; yÞ ¼ F ðf Þðn; gÞ

The filtering process on curvilinear mesh is therefore of the 10th order in the computational domain since it is
of the same form as Eq. (12). However, this does not imply that it is of the 10th order in the physical domain.
The resulting scheme is quite classical in aeroacoustics, and has been extensively used for both aerodynamic
and acoustic computations (see Terracol et al. [21]). However, it is important to notice that: (i) It is a high
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accuracy scheme. This involves that the interpolation operator used to perform the CFD/CAA coupling must
preserve as much as possible this property; (ii) The stencil of the scheme is quite large since it requires five
discretization points on each side of the point to be computed. That means that attention has to be paid to
the fact that the overlapping area between the CFD and CAA regions has to be wide enough to allow a proper
application of the spatial scheme on both the two domains.

Finally, a compact third-order accurate Runge–Kutta scheme has been used for time advancement.

2.4. Description of the coupling method

The method presented here is a simplified overlapping grid technique. Indeed, for the two following appli-
cations, the phenomena of production and diffraction of the acoustic wave will take place in the curvilinear
domain only. In this condition, the acoustic information has just to be transmitted in one way, from the cur-
vilinear domain to the Cartesian one. Therefore, only a one-way coupling method based on overlapping grid
will be considered here. The configuration is the following: a body fitted grid is used around the solid (cylinder,
airfoil, . . .) along with a Cartesian overlapping mesh (see Fig. 1). Then a boundary is defined on the curvilinear
mesh: what is inside the boundary will be simulated on the body fitted grid, while outside information will be
computed on the Cartesian one. In such a configuration, acoustic production and diffraction phenomena only
take place in the curvilinear domain and the Cartesian grid computation has just to propagate the acoustic
waves. This one-way coupling method by grid overlap can be seen as a particular boundary condition treat-
ment for the Cartesian mesh [22]. Because of possible numerical reflections, the curvilinear mesh cannot end at
the coupling boundary. It extends beyond the interface between the two domains and this part constitutes a
sponge zone.

Cartesian points in an inside band of the boundary between the two domains therefore play the role of
ghost points used in classical boundary treatment. Before each time step and filtering process, the values at
these Cartesian points must be interpolated. The width of the band depends on the order of the schemes that
are used. In each direction, the number of points must be at least max((nd � 1)/2, (nf � 1)/2) with nd the stencil
width of the spatial derivative scheme and nf the stencil of the discrete filter – nd and nf being odd numbers.
Before defining the interpolation method, one notice that, on the contrary of most overlapped or overset grid
methods [11,22], the Cartesian points inside the coupling boundary that do not play the role of ghost points
are not discarded here. This step is usually called ‘‘hole cutting process’’ and the purpose is to ‘‘remove’’ the
points where the flow has not physical sense. These points are not identified here for two reasons:

� the flow computed in these points does not have physical sense, but it has no effect on the flow computed on
the other Cartesian points;
� the computer used in our study has a vectorized architecture, so removing points of a domain has negative

effect on CPU performance.
Fig. 1. Cartesian and body-fitted grids, the thick line is the interface.
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The issue of choosing an appropriate interpolation operator for aeroacoustics applications has already been
investigated in several studies for instance in Delfs [11], Sherer and Scott [14], Guénanff et al. [3], Tam and
Kurbatskii [13]. The conclusions of the studies of Sherer and Scott, and Guénanff et al. are the same: explicit
Lagrange interpolator has globally given the best results on the test configurations. In his conclusion, Gué-
nanff has precised that the fourth order interpolator was a good compromise between accuracy and compu-
tational cost. This operator has thus been retained as a basis for the present approach. The interpolation
problem consists in determining the value of a function f at any point M of a geometric space knowing its
values only at the points Pi,j of a structured mesh. Because we perform interpolation, there exists a quadrangle
(Pi,j; Pi+1,j; Pi+1,j+1; Pi,j+1) to which the point M belongs (see Fig. 2). The value of f at M is evaluated knowing
fi+k,j+l, (k, l) 2 [�1,2]2, the values of f at points Pi+k,j+l. We cannot use Lagrange polynomials of the 3rd degree
on this configuration. Therefore, we consider the geometrical transformation h such that the image of Pi+k,j+l

by h is (k, l). This new space is usually called the computational domain. The same space is used to solve the
equations that are considered on curvilinear meshes. The issue of determining the coordinates (X,Y) of M in
this space is a classical problem in Chimera-like methods. The approach used by Sherer and Scott [6] or Delfs
[11] is a high-order extension of the method employed by Benek [23]. It consists in using the interpolator to
approximate the function h�1. Then an iterative Newton method is used in order to inverse h�1 at the point M.
The approach proposed by Guénanff et al. and retained here is different. The transformation h is approxi-
mated as a polynomial function of the third-order for each coordinate (in two dimensions):
hðx; yÞ ¼ ðhX ðx; yÞ; hY ðx; yÞÞ

with
hX ðx; yÞ ¼
X3

k¼0

X3

l¼0

ak;lxkyl

hY ðx; yÞ ¼
X3

k¼0

X3

l¼0

bk;lxkyl
The coefficients a and b are determinated such that:
hðP iþk;jþlÞ ¼ ðk; lÞ for ðk; lÞ 2 ½�1; 2�2
This leads to a linear system of equations. The coefficients a and b are determinated by inverting this system.
Then the coordinates (X,Y) of the point M can be computed. The interpolation of f at the point M, noted
Iðf ÞðMÞ, is computed as:
Iðf ÞðMÞ ¼
X2

k¼�1

X2

l¼�1

fiþk;jþlP kðX ÞP lðY Þ ð15Þ
Y

P

P

P

P M

i,j

i+1, j

i,j+1

i+1,j+1

-1

2

1

0

-1

0 1 2

h

X

Fig. 2. Interpolation of the point M in the reference grid.



362 G. Desquesnes et al. / Journal of Computational Physics 220 (2006) 355–382
where
P kðxÞ ¼
Y2

p¼�1
p 6¼k

x� p
k � p

ð16Þ
It is well known that this interpolation of f at the point M is fourth order accurate in the computational do-
main. This result tells us that the finer is the mesh the better is the interpolation but does not provide give with
more information about the interpolation error in function of the wavenumbers of the signal.

3. Theoretical analysis of Lagrange interpolation

The interpolation defined above in the Cartesian reference space in two dimensions comes from the tensori-
sation of the 1D interpolation scheme. Therefore, the theoretical study is performed in 1D. The results can
then be extended in 2D in a straightforward manner. This analysis is different from the one proposed by
Tam and Kurbatskii [13] and extended by Sherer and Scott [6] in which they developed optimized interpola-
tion methods. Our theoretical analysis is made within the framework of the signal theory and can be extended
to the main interpolation methods.

Interpolation is used to initialize values on a mesh from the data coming from another one. In this process,
two stages will be distinguished: first the construction of a continuous signal from the sample signal and, sec-
ond, the discretization of this continous signal on a new mesh. We will understand then how interpolation can
create spurious modes.

3.1. The fundamental result of the signal theory

Let xn be the points of an infinite mesh, xn = nDx with n positive or negative integer. Let f be a square inte-
grable function. Its Fourier transform f̂ is defined as:
f̂ ðaÞ ¼
Z 1

�1
f ðxÞe�iax dx ð17Þ
where a is the wavenumber. Following the signal theory, the function f discretized at the mesh points is written
as a sum fd of Dirac distributions:
fdðxÞ ¼
X1

n¼�1
f ðnDxÞdðx� nDxÞ ð18Þ
The fundamental result of the signal theory is Shannon [24] and Whitaker’s [25] theorem: if the support of f̂ is
included in ]�p/Dx,p/Dx[ then
f ðxÞ ¼
X1

n¼�1
f ðnDxÞhDxðx� nDxÞ ð19Þ

()
f ðxÞ ¼ fd HhDxðxÞ ð20Þ
where
hDxðxÞ ¼
sinðpx=DxÞ

px=Dx
ð21Þ
This theorem shows that hDx is the ideal interpolation function. In practice, we cannot use it because the exact
value of f(x) is defined as an infinite sum.

3.2. Lagrange interpolation and signal theory

We keep the signal theory hypothesis and assume that Shannon and Whitaker’s theorem can be applied to
f. The interpolation of f at any location of x with 3rd degree Lagrange polynomials can be written:



G. Desquesnes et al. / Journal of Computational Physics 220 (2006) 355–382 363
Iðf ÞðxÞ ¼
X1

n¼�1
1½0;1½

x
Dx
� n

� �X2

k¼�1

fnþkP k
x

Dx
� n

� �
ð22Þ
where
1½0;1½ðxÞ ¼
1 if x 2 ½0; 1½
0 else

�
ð23Þ
and Pk(x) was defined in Eq. (16). By rewriting Eq. (22), one can prove that it is equivalent to:
Iðf ÞðxÞ ¼ fd HcDxðxÞ ð24Þ

where
cDxðxÞ ¼
X2

k¼�1

P k
x
Dx
þ k

� �
1½0;1½

x
Dx
þ k

� �
ð25Þ
Interpolation relying on Lagrange polynomials is therefore equivalent to a convolution. One can notice that
Eqs. (20) and (24) are of the same form. In a more general case, the signal theory predicts that every linear and
steady operator can be written as a convolution product [26]. Fig. 3 displays hDx and cDx for Dx = 1, we can
notice that cDx is an approximation of hDx. Indeed, the higher is the order of the Lagrange polynomials used,
the more similar is hDx to cDx: pieces of curve appear around the central peak of hDx that come to ‘‘stick’’ to
cDx. Thanks to Eq. (24), one can derive an explicit relation between dIðfÞ and f̂ d . Indeed, in Fourier space, Eq.
(24) is equivalent to:
dIðfÞðaÞ ¼ f̂ dðaÞĉDxðaÞ ð26Þ

One can see that all the features of the interpolation depend on ĉDx. Fig. 4 displays ĉDx and ĥDx. Several remarks
can be drawn from this figure. First, both ĥDx and ĉDx are real functions. That means that the interpolation
itself does not create dephasing, this property comes from the symmetry of cDx. Secondly, ĉDxðaÞ 6 Dx for
every a (Dx = 1 in Fig. 4), interpolation based on Lagrange polynomials does not magnify some components
of the original spectrum. Third, the magnitude of the high wavenumbers is lowered, ĉDxðp=DxÞ ¼ Dx=2. At last,
the support of ĉDx is not included in ]�p/Dx,p/Dx[ and Poisson’s formula [26] shows that:
f̂ dðaÞ ¼
1

Dx

X1
n¼�1

f̂ a� 2pn
Dx

� �
ð27Þ
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Fig. 3. cDx and hDx for Dx = 1.
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That means interpolation creates very high wavenumbers which do not exist in f. However, we can note that
the zeros of ĉDx are of the form a = 2pn/Dx with n 6¼ 0. As a consequence, the low wavenumbers of f create
some disturbances of very small magnitudes in opposition to its high wavenumbers. The Section 3.3 explains
how these very high wavenumber disturbances appear in the band-width of the second mesh.

3.3. Interpolation on a second mesh

Interpolation is used to initialize a second mesh, leading to the need to discretize Iðf ÞðxÞ. Eq. (27) showed
us that a discretization ‘‘periodizes’’ the Fourier transform of a function, so we must go on the analysis to
understand the link between the Fourier transform of a function on the first and the second mesh. To stay
in the framework of the signal theory, we assume that the second mesh is of the form x0n = nDx 0 + d where
�Dx/2 6 d < Dx/2. We note gd the discretization of Iðf Þ on this second mesh.
gdðxÞ ¼
X1

n¼�1
Iðf ÞðnDx0 þ dÞdðx� nDx0 � dÞ ð28Þ
To be consistent, we assume that the support of f̂ is included in ]�p/Dx 0,p/Dx 0[. The Fourier transform of gd

has the following analytical expression:
ĝdðaÞ ¼
1

Dx0
X1

m¼�1
e�i2pm

Dx0 d dIðfÞ a� 2pm
Dx0

� �
()

ĝdðaÞ ¼
1

Dx0
X1

m¼�1
e�i2pm

Dx0 d ĉDx a� 2pm
Dx0

� �
f̂ d a� 2pm

Dx0

� � ð29Þ
Ideally, we would have ĝd ¼ 1=Dx0f̂ on ]�p/Dx 0,p/Dx 0[. One can prove that the sole case in which it hap-
pens is Dx 0 = Dx and d = 0, i.e. without interpolation. The fact that dIðfÞ does not have its support in-
cluded in ]�p/Dx, p/Dx[ involves a phenomenon named aliasing or spectrum overlap in ĝd . The
spurious modes created by interpolation appear now with wavenumbers belonging to ]�p/Dx 0,�p/Dx 0[,

that means they cannot be all filtered. Besides, we can remark that in opposite to dIðfÞ, dephasing appears
if d 6¼ 0, but it is important to notice that the interpolation itself does not create dephasing while the dis-
cretization of the interpolated function does. In the general case, since ĝd is a periodization of dIðfÞ, inter-
polation error is minimized for low wavenumber functions.



G. Desquesnes et al. / Journal of Computational Physics 220 (2006) 355–382 365
However, there are interesting particular cases: Dx = kDx 0 and Dx 0 = kDx where k is an integer. If
Dx = kDx 0, Eq. (29) is equivalent to:
ĝdðaÞ ¼
1

Dx0
X1

m¼�1
e�i2pm

Dx0 d ĉDx a� 2pm
Dx0

� � !
f̂ dðaÞ ð30Þ
Indeed, f̂ d is a 2p/Dx periodic function, since Dx = kDx 0, f̂ d is also a 2p/Dx 0 periodic function, yielding:
f̂ d a� 2pm
Dx0

� �
¼ f̂ dðaÞ 8m 2��1;1½
Thus, Eq. (30) can be deduced. One can notice that it is of the same form as Eq. (26). In this particular case,
the wavenumbers of the spurious modes created by interpolation do not belong to ]�p/Dx,�p/Dx[, that means
they can all be filtered. Besides if d = 0, there is no dephasing on the wavenumbers of f. So, if Dx > Dx 0,
Dx = kDx 0 and d = 0 is the best configuration to use interpolation based on Lagrange polynomials. If
Dx 0 = kDx, Eq. (29) is equivalent to:
ĝdðaÞ ¼
1

Dx

X1
m¼�1

e�i2pm
Dx d ĉDx a� 2pm

Dx

� � !
1

Dx0
f̂ ðaÞ for a 2 � p

Dx0
;

p
Dx0

i h
ð31Þ
In Eq. (29), each m can be rewritten in the form:
m ¼ pk þ q
with
0 6 q < k
Since f̂ d is a 2p/Dx periodic function and Dx 0 = kDx:
f̂ d a� 2pm
Dx0

� �
¼ f̂ d a� 2pðpk þ qÞ

Dx0

� �
¼ f̂ d a� 2pq

Dx0

� �

Thus, Eq. (29) is equivalent to:
ĝdðaÞ ¼
1

Dx0
Xk�1

q¼0

X1
p¼�1

e�i
2pðpkþqÞ

Dx0 d ĉDx a� 2pðpk þ qÞ
Dx0

� � !
f̂ d a� 2pq

Dx0

� �

The support of f̂ is included in ]�p/Dx 0,p/Dx 0[, so:
f̂ d a� 2pq
Dx0

� �
¼ 0 for q 6¼ 0 and a 2 � p

Dx0
;

p
Dx0

i h

Thus, Eq. (31) can be deduced. In that configuration, no spurious mode appears, there is only dephasing if
d 6¼ 0. Remark: for the previous result, the hypothesis f̂ 2 �� p=Dx0;�p=Dx0½ is fundamental otherwise there
are aliasing troubles.

3.4. Numerical examples

The purpose of this section is to illustrate results presented above. We consider a family of functions of the
form (see Fig. 5):
fkðxÞ ¼ cos
kp
16

x
� �

exp � x
16

� �2
� �

k 2 ½0; 14� ð32Þ
The Fourier transform of fk is:
f̂ kðaÞ ¼
1

2
f̂ a� kp

16

� �
þ f̂ aþ kp

16

� �� �
ð33Þ
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where
f̂ ðaÞ ¼ 16
ffiffiffi
p
p

exp �ð16aÞ2

4

 !
ð34Þ
f̂ k is a real function with support included in ]�p,p[. In Fig. 6, f̂ k is displayed for all k. The functions fk are
discretized with a step of 1, then they are interpolated with Lagrange polynomials. The Fourier transform of
the interpolated function IðfkÞ is displayed in Fig. 7 for k = 4 and 14 in log scale. Plots with a log scale show
that interpolation creates some high wavenumber modes whatever the initial function is. If the wavenumbers
of the initial function are low (functions fk with k = 0,1,2,3 and 4), spurious modes are not significant: the rel-
ative error between the magnitude of the greatest spurious mode and the maximum magnitude of dIðfkÞ is
lower than 0.1%. Whereas for high wavenumber functions, those modes may be very important: the relative
error is greater than 50% for k = 14. However, we can note that the ratio between static and acoustic pressure
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is of the same order as the relative interpolation error of a low wavenumber signal, that explains why inter-
polation must be applied to perturbated variables.

Now, IðfkÞ is used to initialize a second mesh of step Dx 0, we note gk,d the discretized function. We have
chosen two values for Dx 0, one for a general case Dx 0 = 2/3, another one for a particular case Dx 0 = 2. For
both the two cases d = 0 (d 6¼0 just creates dephasing). The Fourier transform of gk,d is then a real function
as dIðfkÞ is.

In Fig. 8 for Dx 0 = 2/3, the real part of ĝk;d is displayed for several k. We can observe the phenomenon pre-
dicted by theory, in particular some spurious modes can appear in ]�p,p[.

The real part of ĝk;d for Dx 0 = 1/2 is displayed in Fig. 9. In this particular case, we observe that none of the
spurious modes belongs to ]�p,p[. As a consequence, they can be filtered.
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3.5. Conclusion

The theoretical analysis has shown that the interpolation creates some spurious modes for each wavenum-
ber of the signal, but the lower the wavenumber is, the lower the magnitude of spurious mode is. In the general
case, the spurious modes created cannot be all filtered because their wavenumbers belong to the whole band
width of the mesh. This analysis has shown us what are the optimal conditions to apply this interpolation. The
next two sections will now present some practical applications of the method to CFD/CAA coupling (Section
4) and CAA/CAA coupling (Section 5) in a complex geometry.

4. Application: cylinder noise

In a first step, the method has been carefully assessed on reference simple cases such as harmonic pulses (not
shown here). The test case considered here consists in simulating the vortex shedding behind a cylinder and
capturing the generated acoustic wave in farfield. This application illustrates the direct simulation approach
for the prediction of the radiation of the aeroacoustic sources of the flow.

4.1. Configuration

The main parameters of the configuration are: ReD = 100, Ma = 0.15 where D is the diameter of the cyl-
inder centered at x0 = y0 = 0. Sherer and Scott [6] have tested the coupling method they proposed in a close
configuration. However, their purpose was different, it was to properly capture the vortex shedding on the
Cartesian grid, while our purpose here is to predict the farfield noise generated by the flow around the cylin-
der. Experience has shown that the sources of the generated acoustic waves are located just above and below
the cylinder, and act as a dipole. In this configuration, the Strouhal number of the acoustic wave computed
from numerical simulations [27–29] is 0.166. It corresponds to a wavelength varying from 34D to 46D between
upstream and downstream parts of the domain. For this test, the characteristic scale difference between the
hydrodynamic flow and the acoustic waves is very high. This disparity appears in the computational grids,
indeed the height of the smallest cell of the body-fitted grid is 5 · 10�3D while a spatial increment of 3D would
be sufficient to propagate the acoustic waves on the Cartesian mesh. Four simulations are performed with two
different Cartesian grids. The curvilinear grid is defined such that the acoustic wave is well propagated up to
16D away from the cylinder. For these simulations, the Navier–Stokes equations (Eq. (1)) are used to simulate
the unsteady flow on the body fitted grid and to propagate the acoustic wave on the Cartesian mesh. The
numerical schemes defined in Section 2 are used to discretise them. Some classical boundary conditions based
on the characteristic theory [30] have been used to minimize numerical reflections.
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4.2. Cartesian grid description

The mesh size of the first uniform Cartesian grid is 0.75D in each direction. With such a mesh size, the num-
ber of points per wavelength is larger than 50. It is much more what is necessary knowing that eight points per
wavelength are sufficient for a good numerical accuracy with the schemes used. But a much larger spatial
increment cannot be taken because the Cartesian grid must be refined enough to handle the hydrodynamic
fluctuations in the wake. With such a spatial increment, a spatial period of the vortex shedding represents
about four points per wavelength. It can be noticed that it is not sufficient to ensure a good approximation
of the different operators by the numerical scheme. In this condition, the hydrodynamic fluctuations will be
damped on the Cartesian grid. However, the aim is here to propagate the acoustic waves on this grid, and
we assume that these fluctuations have no major influence on the directivity of the aeroacoustic sources.
The dimensions of the Cartesian grid are 279D · 279D. With this grid, three different coupling areas have been
considered. The first one has a closed shape (simulation 1) and it intercepts the wake of the cylinder as shown
in Fig. 10. This coupling area has been defined such that its outside boundary is located near the limit of the
validity domain of the curvilinear mesh – acoustic waves are well propagated on the curvilinear grid up to 16
diameter – and it contains enough Cartesian points in each direction for the coupling procedure. The two
other areas have an open shape and do not cross the wake of the cylinder. They are characterized by a different
half opening angle, for one it is 50� (simulation 2) for the other 70� (simulation 3) (see Fig. 10). With open
coupling areas, the physical flow cannot be computed for all Cartesian points. According to the location of
the aeroacoustic source that is known in this configuration, the flow computed on the Cartesian points in
the area corresponding to the opening angle of the coupling zones is supposed not to be valid (see Fig. 11).

The spatial increment of the second Cartesian grid, used in simulation 4, is 0.1D. It is about eight times
smaller than the one of the first Cartesian mesh. Its dimensions are 60D · 60D. The coupling area used in
the simulation 4 is displayed in Fig. 12. It has been chosen such that in this area, the size of the Cartesian cells
is the same order as the curvilinear ones. Since the Cartesian grid is very fine with respect to the hydrodynamic
fluctuations in the wake (about 26 points per spatial period of the vortex shedding), sponge areas that consist
in Cartesian grids progressively stretched in one direction have been used to damp the pressure fluctuations
before they reach the boundaries of the computational domain. The features of the different simulations
are summarized in Table 1.

4.3. Results

Simulation 1 failed to capture the physics of the flow as shown in Fig. 13. Even though the vortex shedding
is well captured on the Cartesian mesh as in Sherer and Scott’s configuration [6] and even if the cylinder dipo-
lar source seems to have been captured on the Cartesian grid, there is a spurious source that appears in the
coupling area around the wake, whose magnitude is the same order as the physical source on the cylinder.
In the coupling area, the number of points for a spatial period of the vortex shedding is about 4 on the
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Table 1
Main features of the four simulations

Cartesian grid size Cartesian grid dimensions Coupling area Sponge areas

Simulation 1 0.75D 279D · 279D Closed No
Simulation 2 0.75D 279D · 279D Open (50�) No
Simulation 3 0.75D 279D · 279D Open (70�) No
Simulation 4 0.1D 60D · 60D Closed Yes
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Cartesian mesh and about 8 for the curvilinear one. According to the theoretical analysis performed in the
previous section, the interpolation of hydrodynamic fluctuations and an aliasing phenomenon have generated
spurious modes whose magnitudes are of the same order as the acoustic fluctuations. So, the acoustic field is
strongly affected resulting in the creation of the spurious dipole. The result of the simulations 2 and 3 will
allow to assess this hypothesis since the coupling area does not cross the wake for the two other simulations.
It can be noticed that there are troubles with the boundary condition on the symmetry plane of the configu-
ration at the downstream boundary. As a matter of fact, a low pressure region (in black in Fig. 13) appears.
For the simulations 2 and 3, one observes a dipolar radiation on the Cartesian mesh with an apparent source



Fig. 13. Simulation 1: pressure fluctuations, range from �20 to 20 Pa around p1.
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located around the cylinder (see Fig. 14). This confirms that the interpolation of the hydrodynamics fluctua-
tions in the wake was responsible for the spurious acoustic dipole that has appeared in the first simulation. It
can also be noticed that the boundary condition still induces some troubles. In Fig. 15, instantaneous pressure
fluctuations around p1 of simulation 4 can be observed. The black circle is the interface between the curvi-
linear grid and the Cartesian one. A part of the fluctuations in the sponge areas is also displayed. The damping
effect on the wake behind the cylinder is to be noticed. For this simulation, the spurious dipole is no longer
observed.

In Fig. 16, the temporal pressure signal at the point (�25;�25) is displayed for simulations 2, 3 and 4. Five
periods can be observed, from which the Strouhal number of the acoustic source can be computed. Its value is
0.164 for each simulation. It is a little smaller than the reference one previously quoted. However, the same
Strouhal number is obtained on the curvilinear grid, so the coupling method is not responsible for this small
difference.

A reference simulation of the cylinder noise in the configuration described above has been computed on a
curvilinear mesh refined such that the acoustic is well propagated up to R = 30D. The computation of the sta-
tistical variables has been done over six periods of the vortex shedding. In Fig. 17, the directivity diagrams of
simulations 2, 3 and 4 are compared with the reference solution. It is seen that the rms pressure profiles of
simulations 2 and 3 match the reference for the assumed valid angles (between the vertical lines) with a dif-
ference lower than 2 dB except for angles around 180� where the difference is about 7 dB. It corresponds to
the symmetry plane of the configuration upstream the cylinder. It can also be observed that, except for the
ends of the angle interval, the difference of the rms pressure of the simulation 4 to the reference remains lower
Fig. 14. Pressure fluctuations, range from �20 to 20 Pa around p1: (a) simulation 2; (b) simulation 3.
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than 0.5 dB. At the ends of interval, the magnitude of the hydrodynamic fluctuations are measured. In this
region, the rms pressure in dB of the reference simulation in much lower than the one of the simulation 4
(about 10 dB). One hypothesis to explain this phenomenon is that at 30D, the resolution of the reference
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curvilinear mesh in the streamwise direction is low with about 4 points per wavelength of hydrodynamic fluc-
tuations. This means that these fluctuations are damped in the reference simulation. On the contrary, the
Cartesian grid has a higher resolution, and so the numerical dissipation is lower. Once again, excepted in
the wake region, it can be noticed that it is for the angles around 180� the rms pressure error is the greater.
At R = 110D, a directivity diagram can be computed only for simulations 2 and 3. Indeed for computational
cost reasons, the Cartesian grid of the simulation 4 is not as large as the one of the two other simulations. At
this distance (Fig. 18), the rms pressure predicted by both simulations are almost identical. So, it can be
observed that the differences between the coupling areas of the simulation 2 and 3 do not have major influence
on the farfield noise radiated. However, it can be noticed that small rms pressure fluctuations appear on the
diagrams. It seems that the boundary conditions used could not prevent all acoustic reflections. It may be
thought that these reflections can be responsible for the difference of the rms pressure in dB between simula-
tions 2 and 3 and the reference one that have been observed in Fig. 17.

4.4. Conclusion

It was observed in simulation 1 that the interpolation of hydrodynamic fluctuations can generate spurious
acoustic waves. Guénanff [2] has encountered the same phenomenon with the mesh refinement method he has
developed. Providing that areas with significant hydrodynamic fluctuations have been avoided, a part of the
farfield acoustic radiation could have been computed with the simulations 2 and 3. However, the quality of the
computed acoustic radiation is not very satisfactory. Besides, the knowledge we had of the solution was nec-
essary to define a ‘‘good’’ coupling area. This might be seen as a limitation in the use of the grid coupling
method. Simulation 4 with a much more refined Cartesian grid did not make a spurious dipole appear in
the wake. This result is coherent with the theoretical study that has shown that the interpolation error is pro-
portional to the wavenumber of the signal. By refining the Cartesian grid and the curvilinear cells in the cou-
pling area (by getting it closer to the cylinder), the interpolation errors have been reduced. The directivity
computed at 30D is more accurate than for the simulations 2 and 3. So, the one-way coupling method has
allowed to predict the noise radiated by the flow around the cylinder. But it is to be noticed that a high res-
olution for the hydrodynamic scales on the Cartesian grid must be used (about 26 points per wavelength of the
vortex shedding) in order to prevent the generation of spurious acoustic modes by the interpolation in this
area.

5. High lift wing profile application

The purpose of this section is to assess the applicability of the proposed coupling method for indus-
trial configurations. We consider here a high-lift wing profile. This configuration was the object of various
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experimental [31] and numerical [32–35,2] studies. This study is based on the one proposed by Guénanff [2] to
evaluate his mesh refinement method. The main source of the aeroacoustic noise is represented thanks to an
analytical model, then two simulations are carried out, one without mean flow and another one with the mean
flow computed by Ben Khelil [35] using RANS.

5.1. Configuration description

The profile corresponds to a 1/11th scale three element wing, of chord 6.5 m, with deployed slat and flap.
The slat and flap deflection angles are, respectively, 32� and 17�. The mean flow is the one computed by Ben
Khelil [35] using RANS, corresponding to a freestream velocity of 65.51 m/s, or equivalently to a Mach num-
ber of 0.2. The Reynolds number based on the wing chord in cruise configuration is Re = 2.55 · 106. The angle
of attack of the main wing body is equal to 4� (see Fig. 19).

The mesh around the profile is composed of 14 domains. The set of curvilinear domains contains about
165,000 cells (see Fig. 20).

The simulations of Choudhary et al. [32], Labourasse [34] and Ben Khelil [35] showed that the main source
of the aeroacoustic noise around the slat has a frequency of 30 kHz and is located just behind the upper trail-
ing edge. We model it using a harmonic monopolar acoustic source of the form:
sðx; tÞ ¼ sinð2pftÞe�
jx�xs j2

b2 ð35Þ

where f is the frequency of the source, xs its coordinates (xs = (0.0083, 0.03) ) and b determinates its width
(b = 0.003). This forcing is applied on the curvilinear grids only. The acoustic wave propagates on the uniform
Cartesian grid beyond the coupling area defined near the profile (see Fig. 21). The mesh size of the Cartesian
grid is 0.0014 in each direction corresponding to 8 points per wavelength. The dimensions of this grid have be
chosen such that the acoustic wave can be propagated up to one chord in each direction (see Fig. 22). The
Cartesian domain contains 1,680,000 cells.

Two simulations have been carried out. For the first one, the mean velocity flow is set to zero in order to
compare the results to those obtained with the commercial software SYSNOISE based on Boundary Element
Method. For the second simulation, the RANS mean flow computed by Ben Khelil is used. It is characterized
by the presence of a separation bubble in the cavity behind the slat (see Fig. 23) as previously shown by
Choudhari et al. [32].
Fig. 19. High lift wing profile.

Fig. 20. Curvilinear mesh boundaries.
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Fig. 24. Unsteady pressure fluctuations between �10 and 10 Pa. Outside the white line, values from Cartesian domain are plotted, inside
values from curvilinear domains.
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For these simulations, the Euler equations in a perturbation form are solved. The numerical schemes are
the same as in the cylinder application. In addition to the non-reflective boundary conditions of Thompson
[30], a buffer area (grid stretching) around the Cartesian grid has been used to damp acoustic waves reaching
the boundaries.

5.2. Results

5.2.1. Simulation with a mean flow at rest

After 10,000 time steps, a statistically steady state is reached. Fig. 24 shows the instantaneous pressure fluc-
tuations. Inside the region demarcated by the white line, fluctuations from the curvilinear domains are plotted,
while those coming from the Cartesian domain are displayed outside. The rms pressure is computed over 45
Fig. 25. Rms pressure around the slat, fluctuations between 60 and 140 dB. Outside the white line, values from Cartesian domain is
plotted, inside values from curvilinear domains.



Fig. 26. Circle on which the directivity diagram is computed.
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periods of the source. It is displayed in Fig. 25 around the slat. One can then observe the directivity of the
source without mean flow. In both figures, a perfect continuity between the curvilinear and Cartesian meshes
is observed, proving that the acoustic waves are accurately interpolated. The rms pressure allows us to com-
pute the directivity of the source. It is computed on a circle centered on the source with a radius of 0.75 m (see
Fig. 26). It has also been computed with the commercial software SYSNOISE based on Boundary Element
Method. After a proper normalization (the radiated acoustic powers must be equal), results can be compared.
The two computed directivities are plotted in Fig. 27, showing a very good agreement.

The maximum error is about 2 dB and we can suppose that this difference can be explained by different
shapes of the acoustic source used for the two computations (pointwise source for BEM). In the area behind
the flap, differences are about 15 dB. We found that the curvilinear mesh was responsible for this. In this
region, the distance between two points is about 0.0023 m whereas the space step of the Cartesian grid (well
-100 100

-100

100

Fig. 27. Directivity diagram at 0.75 m from the source. In solid line, the rms pressure in dB our the simulation, in long dash line, the one
from a simulation based on boundary element method.



Fig. 28. Unsteady pressure, fluctuations between �5 and 5 Pa. Outside the white line, values from Cartesian domain are plotted, inside
values from curvilinear domains.
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suited to propagate the 30 kHz acoustic waves) is 0.0014 m. The curvilinear mesh is thus not fine enough in
this region to properly propagate the acoustic wave before it is interpolated on the Cartesian grid.

5.2.2. Simulation with a steady RANS mean flow
After 15,000 time steps, a statistically steady state is reached. In Fig. 28, we can observe the pressure fluc-

tuations around the slat and in Fig. 29, the rms pressure computed over 45 periods is plotted in dB scale.
As pointed out by Guénanff [2], one can see that the mean flow significantly modifies the radiation of the

source below the wing. In Fig. 30, the directivities of the source at 0.75m, with and without mean flow, are
plotted. We can then see the influence of the mean flow. We can however observe some oscillations of the pres-
sure contour for the simulation with RANS mean flow. It seems that the RANS mean flow is responsible for
this. The near field mean pressure is correctly captured (see Fig. 31) while some wiggles are present in the far-
field (see Fig. 32).
Fig. 29. Rms pressure around the slat, fluctuations between 60 and 140 dB. Outside the white line, values from Cartesian domain are
plotted, inside values from curvilinear domains.



Fig. 30. Directivity diagram at 0.75 m away from the source. Solid line: rms pressure in dB from the simulation with RANS mean flow;
dotted line: simulation without mean flow.
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To check this hypothesis, a partial directivity diagram has been computed at 0.2 m from the source – at this
distance, the circle goes through the profile. It is plotted on Fig. 33, together with the directivity computed at
0.75 m. We can observe that the oscillations do not appear at short distance from the profile, which comes to
support our hypothesis.

5.3. Conclusion

The coupling method has been assessed on the simulation with a mean flow at rest by comparing the results
to those of a reference simulation using a Boundary Element Method approach. Then, the simulation with a
non-uniform RANS mean flow has allowed to observe the influence of the mean flow on the directivity of the
source. The second simulation has also pointed out the fact that attention must be paid in the computation of
Fig. 31. Iso-pressure contours obtained in the RANS simulation, 80 isovalues between 89,000 and 101,000 Pa.



Fig. 32. Iso-pressure contours obtained in the RANS simulation, 80 isovalues between 89,000 and 101,000 Pa.

Fig. 33. Directivity diagram from the simulation with RANS mean flow. Solid line, the rms pressure in dB at 0.2 m away from the source;
long dash line: the one at 0.75 m.
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the mean flow for acoustic studies. It can be noticed here that the use of an analytical model to represent the
source of the main aeroacoustic noise and the use of a RANS mean flow have allowed to get over the diffi-
culties linked to the disparity of the hydrodynamic and acoustic scales.

6. Conclusion and future works

An overlapping grid method for one-way coupling has been presented here. It consists in a Chimera-like
method which has been adapted to the numerical schemes required for CAA. At the interface between the
Cartesian and curvilinear domains, an interpolation based on 4th order Lagrange polynomials is used to
transfer information from the curvilinear grid to the Cartesian one.
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Lagrange polynomials are used in most high-order overlapping grid methods already developed. Here, a
theoretical analysis of this interpolator has been proposed in the framework on the signal theory. It has been
shown that interpolation based on Lagrange polynomials can be seen as an approximation of the Shannon’s
interpolation function which is the ideal one in the framework of this theory. The theoretical analysis has
shown that Lagrange interpolation is responsible for the creation of spurious modes, and that their magnitude
depends on the wavenumbers of the signal: the higher the wavenumbers are, the greater the magnitude of the
created spurious modes is. In the usual case, these spurious modes cannot be all filtered. However, some spe-
cific configurations have been exhibited for which they could be all suppressed.

The overlapping grid method has been used in two configurations which are more complex than those usu-
ally presented in the CAA literature. The first one is the simulation of the noise generated by the flow around a
cylinder. The complexity comes here from the huge scale disparity between the hydrodynamic and acoustic
fluctuations. It was then observed that interpolation in the wake could create a spurious acoustic source if
the Cartesian mesh was not fine enough. More precisely, a very high resolution for the hydrodynamic scales
has to be considered when defining the Cartesian grid even if the only purpose is the propagation of the acous-
tic waves.

For the second application, a high-lift wing profile in landing configuration has been considered. The com-
plexity comes here from the geometry of the profile. The purpose of the application was the prediction of the
farfield noise radiated by a model aeroacoustic source of the slat. Two simulations have been carried out: one
with a mean flow at rest and a second one with a non-uniform turbulent mean flow. For the first one, results
have been favorably compared to those obtained with a solver based on Boundary Element Method. For the
second one, we could observe that the mean flow had a great influence on the directivity of the source below
the wing as already pointed out by Guénanff [2]. This application shows that high-order overlapping grid
methods are well adapted for configurations with a complex geometry as Chimera-like methods in CFD
simulations.

The main conclusion of this work is twofold. First, it has been shown that the use of an overlapping grid
method makes it possible to perform accurate aeroacoustic simulations around complex geometries thanks to
the use of a background Cartesian grid for mid- and farfield acoustic wave propagation. This therefore allows
us to investigate the effects of a non-uniform mean flow on acoustic propagation in some realistic cases (i.e. of
engineering interest). The second point is that the use of interpolation techniques is responsible for the crea-
tion of spurious modes when a too important disparity is present between the characteristic scales represented
by each of the two grids. It has been shown both by theoretical analysis and by performing coupled CFD/
CAA simulations that the only efficient way to avoid such spurious modes to be generated is to refine both
the two grids enough so that all the scales of interest are large when compared to the spatial increment. This
becomes obviously a drastic constraint for CFD/CAA coupling where the scale disparity between the hydro-
dynamic and acoustic scales is huge. For this reason, it appears interesting for future studies to consider alter-
native approaches which introduce for CAA some equivalent source terms computed from the CFD results.
By doing so, it will be ensured that the scale disparity problem will not be present anymore since all the hydro-
dynamic fluctuations in the CFD domain will simply be replaced by some source terms at the noise generation
location. The characteristic scale associated to the interpolated information would then in this case be the
wavelength of the acoustic phenomena, therefore making it possible to use much coarser grids to perform
the propagation than if the hydrodynamic scales have to be accounted for. Such source terms may be directly
derived from unsteady CFD calculations as proposed for instance by Billson et al. [36] or by Stochastic noise
modeling as in the SNGR approach [37]. The possible coupling of such techniques with an overlapping grid
method will be investigated in future studies.
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